# Divergent evolution of chloroplast-type ferredoxins

## Shigeaki Harayama, Alessandra Polissi and Monique Rekik

Department of Medical Biochemistry, University Medical Center, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland

Received 30 March 1991; revised version received 24 April 1991

The TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes required for the oxidation of toluene to Krebs cycle intermediates. The structural genes for these enzymes are encoded in two operons which comprise the xylCMABN and xylXYZLTEGFJQKIH genes, respectively. The function of the xylT gene has not yet been identified. The nucleotide sequence of xylT was determined in this study and putative gene product was shown to contain a sequence characteristic for chloroplast-type ferredoxins. The nahT gene, the homologue of xylT, present on NAH plasmid NAH7 encoding naphtalene-degrading enzymes, was also sequenced. The sequence conservation between xylT and nahT strongly suggests that both gene products have some physiological function. Chloroplast-type ferredoxins have been discovered in photosynthetic organisms (plants, algae, cyanobacteria and Rhodobacter) and Halobacterium species. Furthermore, chloroplast-type ferredoxin-like sequences have been found in the electron-transfer components of some oxygenases. The sequences of XyIT and NahT were compared with those of the previously identified chloroplasttype ferredoxins, in order to examine their evolutionary relationships.

TOL plasmid; NAH plasmid; Ferredoxin; Chloroplast-type; Protein evolution

#### 1. INTRODUCTION

TOL plasmid pWW0 and NAH plasmid NAH7 have originally been discovered in P. putida strains mt-2 and PpG7, and encode catabolic functions for the mineralization of toluene and naphthalene, respectively [1-3]. In these catabolic pathways, the initial substrates, namely toluene and naphthalene, are transformed into catechol, which is further oxidized to Krebs cycle intermediates. In our previous study, the gene order of the *meta* operon of TOL plasmid pWW0, which encodes the enzymes necessary for the mineralization of benzoate via catechol has been determined to be: xylXYZLTEGFJOKIH [4]. The xylXYZL genes are required for the transformation of benzoate to catechol while the xylEGFJKIH genes are required for the oxidation of catechol to Krebs cycle intermediates (Fig. 1). The function of the xylT product is not yet known. The catabolic genes on the NAH7 plasmid have also been chaacterized. The sal operon on the plasmid encodes nahGHINLJK; the nahG gene is the structural gene for salicylate hydroxylase while nahH, nahI, nahN, nahL, nahJ and NahK are isofunctional to xylE, xylG, xylF, xylJ, nahH and xylI, respectively. Extensive sequence homology exists between xylE and nahH and between xylG and nahI [5,6] Salicylate hydroxylase, encoded by nahG, catalyzes a reaction completely different from that catalyzed by the

Correspondence address: S. Harayama, Department of Medical Biochemistry, University Medical Center, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland. Fax: (41) (22) 473300.

xylL product (Fig. 1), and no DNA sequence similarity exists between xylL and nahG [6a] (Harayama, S. and Rekik, M., unpublished result). We have, however, found that homologous recombination could occur between the xylT region on pWW0 and the upstream region of nahH on NAH7 (Harayama and Rekik, unpublished result). This observation suggests that the NAH7 plasmid encodes a gene analogous to xylT in a region between nahG and nahH (Fig. 2). The evolutionary conservation of the xylT-like sequence in the NAH7 plasmid indicates that xylT and its homologue on the NAH7 plasmid named nahT, play some physiological role in the metabolism of catechol. In this study, we sequenced the DNA regions of xylT and nahT.

#### 2. MATERIALS AND METHODS

### 2.1. DNA sequencing and analysis

Sau3A-generated fragments of pGSH2939 carrying the nahT sequence were cloned into M13 bacteriophage derivatives, tg130, tg131 and mp18 as described previously [5]. DNA sequencing using M13 derivatives was carried out by the established method [7]. Klenow fragment was used for the sequencing of the M13 derivatives. Two deletion derivatives of pGSH2939,  $\Delta(Xbal-Ncol)$  and  $\Delta(Ncol-$ EcoRI), were sequenced using T7 polymerase according to instructions by Pharmacia. The xylT region of the pWW0 DNA was subcloned from pGSH3042 [5] into pGEM-7Zf(-) [8] from which nested deletions were obtained using exonuclease III according to Henikoff [9]. These plasmids were sequenced by T7 polymerase. The alignment of xylT and nahH was carried out manually whereas the multiple alignment of chloroplast-type ferredoxins was done with the CLUSTAL program [10] in the PC/GENE software package (developed by A. Bairoch and available from IntelliGenetics).

nahT

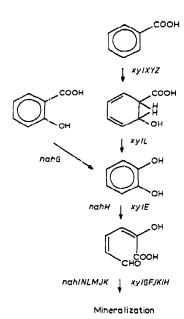



Fig. 1. Parts of the catabolic pathways encoded by TOL plasmid pWW0 and NAH plasmid NAH7. Enzymatic steps involved in the transformation of benzoate into 2-hydroxymuconic semialdehyde in the TOL catabolic pathway, and those involved in the transformation of salicylate into 2-hydroxymuconic semialdehyde in the NAH catabolic pathway are presented.

### 3. RESULTS AND DISCUSSION

The strategy for DNA sequencing in the region between xylL, the structure gene for 1,2-dihydroxycyclohexa-2,4-diene carboxylate dehydrogenase, and xylE, the structural gene for catechol 2,3-dioxygenase is shown in Fig. 3. As shown in Fig. 4, this region contains an open-reading frame which allows the synthesis of a polypeptide of 12 034 daltons. A putative initiation codon for xylT is preceded by a Shine-Dalgarno-like sequence, GGA. The initiation codon of xylE overlaps with the TGA stop codon of xylT. The DNA region upstream of nahH was determined by the strategy shown in Fig. 3 and its nucleotide sequence and a possible gene product from this region of DNA is presented

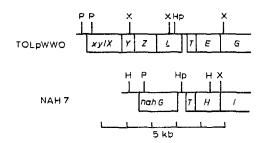



Fig. 2. Order of the catabolic genes on TOL plasmid pWW0 and NAH plasmid NAH7. The functions of these genes are indicated in Fig. 1, except xylT and nahT whose function is not yet known. Restriction sites are: P, PstI; X, XhoI; Hp, HpaI; and H, HindIII. Boxes represent gene locations.

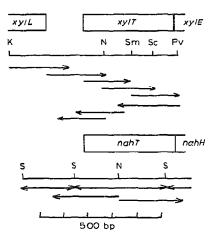



Fig. 3. Strategies for the sequencing of xylT and nahT. Restriction sites are: K, Kpnl; N, Ncol; Sm, Smal; Sc, Sacl; Pv, Pvull; and S, Sau3A.

GATCTAAGCATGGGCGGCCTACCGACCCTAGCGTCAGTGGGCCGCAGCCACAACGGCAAC




Fig. 4. The nucleotide sequences of xy/T and nahT and the amino acid sequences of the putative xy/T and nahT products. Shine-Dalgarno-like sequences for the xy/T and nahT genes are underlined. The ATG sequences present at the end of xy/T and nahT are the initiation codons for xy/E and nahH, respectively.

|                | 127                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|
| Ferspipl       | ATYKYTLINEAEGINETIDCDDDTYILDAAEEAGL-DLPYSCRAGACSTCAGTITSGTIDGSDGSFLDDDDIEAGYV-LTCVAYPTSDCTIKTHQEEGLY                        |
| FERCHLFR       | ATYKYTLINDAEGLNGTIEVDDDTYILDAAEEAGL-DLPYSCRAGACSTCAGKIKSGTVDGSDGSFLDDDGIEAGYV-LTCVAYPTSDCTIETHKEEELY                        |
| FERPORUM       | ADYKIHLVSKEEGIDVTFDCSEDTYILDAAEEEGI-ELPYSCRAGACSTCAGKVTEGTVDQSDQSFLDDEQHLKGYV-LTCIAYPESDCTILTHVEQELY                        |
| FERHALHA PTVEY | LNYETLDDGGWDMDDDLFEKAADAGLDGEDYGTMEVAEGEYILEAAEAGGY-DWPFSCRAGACANCASIVKEGEIDHDHGGILSDEEVEEKDVRLTCIGSPAADEVKIVYNAKHLDYLGNRVI |
| XYLAN          | MNEFFKKISGLFVPPPESTVSVRGGGFGFKVPRGGTILESALHGGI-AFPHDCKVGSCGTCKYKLISGRVNELTSSAMGLSGDLYGSGYRLGCGCIPKEDLEIELDTVLGGA            |
| PHP5N          | HSYNVTIEPTGEVIEVEDGGTILGAALRGGV-MLPFACGHGTCATCKVGVVEGEVDIFEASPFALHDIERDERKALACCAIPLSDLVIEADVDADPD                           |
| HHOCH          | MORVHTITAVTEDGESLRFECRSDEDVITAALRONI-FLHSSCREFFCATCKALCSEGDYDLKGCSVGALPPEEEEEGLVLLCRTYPKTDLEIELPYTHCRI                      |
| XYLZN          | MTHKVATDFEDGVTRFIDANTGETVADAAYROGI-NLPLDCRDGACGACKCFAESGRYSLGEEYIEDALSEAEAEGGYVLYCGHRAESDCVIRVPAASDVC                       |
| BENCH          | MSLYLNRIPAMSNHOVALGFEDGVTRFIGIAGGETLSDAAYROGI-NIPHDCREGECGTCRAFCESGNYDHPED-NYIEDALTPEEAOGGYVLACOCRPTSDAVFGIGASSEVC          |
| FERRCAP        | MDKATLTF7DVS17VNVP7GTR1IEMSEKVGS-G1YYGCREGECG7CMTH1LEGSENLSEPTALEMRVLEEHLGGKDDRLACOCRVLGGAVKVRPA                            |
| XYLT           | MNSAGYEVFEVLSGOSFRCAEGOSVLRAMEAGGKRCIPVGCRGGGGGLCRVRVLSGAYRSGRMSRGHVPAKAAAEALALACQVFP9TDLTIEYFRHVGGNKPDNHHYEEVTS            |
| NAHT           | MSEVFEITVOPGGERFVCOPQOSALHAMETQGKRCLPVGGRGGGGGLCKVRVLAGDYESGRVSCKHLPVEAREGGYALACRLFARSDLCIERYSKPCSESTVDOQOR                 |
| VANBC          | DARAFEGRLARSGLTLQVPAERSVAGVLDDAGV-CIPLACEQGICGTCLTRVLDGEPEHRDSFLTDAERARNDOFTPCCSRARSACLVLDLYGEEPRGLAVPGLVTGR                |
|                |                                                                                                                             |

Fig. 5. Alignment of the XylT and NahT sequences with other chloroplast-type ferredoxins. (-) = no corresponding amino acid, (\*) = identical amino acid. Sources of the amino acid data are: ferredoxin from Spirulina platensis (FERSPIPL) [19], ferredoxin from Chlorogloepsis fritschii (FERCHLFR) [20], ferredoxin from Porphyra umbilicalis (FERPORUM) [21], ferredoxin from Halobacterium halobium (FERHALHA) [22], the amino-terminal sequence of XylA, an electron transfer component of xylene mono-oxygenase [16], the amino-terminal sequence of Polypeptide 5 of phenol hydroxylase (PHP5N) [15], the amino-terminal sequence of the electron transfer component of methane mono-oxygenase [14], the amino-terminal sequence of XylZ, an electron transfer component of toluate 1,2-dioxygenase (XYLZN, Harayama et al., unpublished), the amino-terminal sequence of BenC, an electron transfer component of benzoate 1,2-dioxygenase (BENCN, Neidle et al., submitted), ferredoxin from Rhodobacter capsulatus (FERRCAP) [12] and carboxyl-terminal sequence of VanB, an electron transfer component of vanillate decarboxylase (VANBC) [13]. The fraction of homologous sequences in the aligned sequences between coordinates 27 and 110 was counted for all pairs of the sequences, and summarized in Table 1.

in Fig. 4. The gene encoded upstream of nahH was named nahT. The nahT region has also been sequenced by You et al. [6a]. The nucleotide sequence similarity between xylT and nahT, and the amino acid sequence similarity between XylT and NahT are evident in Fig. 4. Inspection of the amino acid sequences of XylT and NahT revealed the presence of the sequences characteristic to chloroplast-type ferredoxins, namely Cys-XXXX-Cys-XX-Cys [10]. This class of ferredoxins contains one [2Fe-2S] cluster, and the four non-variant cysteine residues bind two iron atoms. These ferredoxins have originally been found in photosynthetic organisms, namely plants, algae and cyanobacteria. The chloroplast-type ferredoxins are also found in nonphotosynthetic archaebacteria, such as the Halobacterium species [11]. More recently, a chloroplast-type ferredoxin was found in Rhodobacter capsulatus, a photosynthetic bacterium [12]. Furthermore, the se-

quences similar to those of the chloroplast-type ferredoxins have been found in the electron transfer components of some oxygenases, namely in the carboxylterminal sequence of the VanB component of vanillate decarboxylase [13], and in the amino terminal of the MmoC component of methane mono-oxygenase [14], of Polypeptide 5 of phenol hydroxylase [15], of the XylA component of xylene mono-oxygenase [16], of the BenC component of benzcate dioxygenase [17] (Neidle et al., submitted), and of the XylZ component of toluate dioxygenase [18] (Harayama et al., manuscript in preparation). Therefore, it would seem that these oxygenase subunits have emerged by fusion of ancestral chloroplast-type ferredoxins with other proteins. The alignment of XvIT and NahT with other chloroplast-type ferredoxins is presented in Fig. 5, and the fraction of homologous amino acids is presented in Table I.

Table I

Percent homologies between chloroplast-type ferredoxins

|                 | FERSPIPL | FERCHLFR | FERPORUM | FERHALHA | PHP5N | MMOCN | XYLAN | XYLZN | BENCN | FERRCAP | XYLT | NAHT | VANBC |
|-----------------|----------|----------|----------|----------|-------|-------|-------|-------|-------|---------|------|------|-------|
| FERSPIPL        | 100      |          |          |          |       |       |       |       |       |         |      |      |       |
| FERCHLFR        | 89       | 100      |          |          |       |       |       |       |       |         |      |      |       |
| <b>FERPORUM</b> | 70       | 67       | 100      |          |       |       |       |       |       |         |      |      |       |
| <b>FERHALHA</b> | 37       | 40       | 40       | 100      |       |       |       |       |       |         |      |      |       |
| XYLAN           | 28       | 31       | 27       | 28       | 100   |       |       |       |       |         |      |      |       |
| PHP5N           | 18       | 22       | 22       | 21       | 32    | 100   |       |       |       |         |      |      |       |
| MMOCN           | 22       | 22       | 26       | 25       | 31    | 22    | 100   |       |       |         |      |      |       |
| XYLZN           | 24       | 23       | 25       | 23       | 27    | 32    | 33    | 100   |       |         |      |      |       |
| BENCN           | 20       | 20       | 20       | 21       | 26    | 29    | 35    | 63    | 100   |         |      |      |       |
| FERRCAP         | 20       | 21       | 12       | 24       | 20    | 26    | 18    | 25    | 26    | 100     |      |      |       |
| XYLT            | 19       | 19       | 22       | 24       | 28    | 24    | 23    | 26    | 27    | 20      | 100  |      |       |
| NAHT            | 19       | 17       | 20       | 20       | 32    | 25    | 29    | 28    | 24    | 19      | 55   | 100  |       |
| VANBO           | 18       | 20       | 18       | 22       | 22    | 17    | 11    | 17    | 15    | 20      | 25   | 23   | 100   |

The percent homologies between all pairs of aligned chloroplast-type ferredoxins are shown. The comparison was made between the residues 27 and 110 shown in Fig. 4. Gaps are considered to be mismatched.

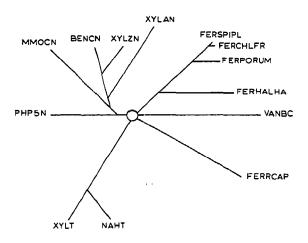



Fig. 6. Proposed phylogenetic relationships derived from the comparison of partial ferredoxin sequences. See Fig. 5 for the sequence names.

Possible evolutionary relationships between these ferredoxins were examined based on the results in Table I. As shown in Fig. 6, the chloroplast-type ferredoxins could be classified into five distinct subfamilies. The first subgroup comprises ferredoxins from chloroplasts, cyanobacteria and the Halobacterium species. These ferredoxins are characterized by their low mid-point redox potential (-300 mV or less). The second subgroup consists of the ferredoxin sequences found in BenC, MmoC, Polypeptide 5, XylZ and XylA. All the proteins in this subfamily are composite polypeptides which consist of ferredoxin-like structure in the aminoterminal region and NADH ferredoxin oxidoreductaselike structure in the carboxyl-terminal region. Since these ferredoxins are involved in the electron transfer from NADH to oxygen, their mid-point redox potential may be significantly higher than those of the first subfamily. The ferredoxins from xylT and nahT are similar to each other, however these proteins are distantly related to any of the other ferredoxins. Chloroplasttype ferredoxin from R. capsulata and carboxylterminal sequence of VanB are also strongly diverged from other ferredoxin sequences. XylA, XylT and XylZ are encoded on TOL plasmid pWW0. However, the sequence similarities between these proteins are not stronger than those between other ferredoxin pairs. This observation suggests that the direct progenitors of the ferredoxin genes on TOL plasmid pWW0 are not common, but these genes were derived from different ancestral ferredoxin genes.

Since the xylT and NahT genes were conserved on two different catabolic plasmids, their products may be involved in a metabolic step common to toluene- and naphthalene-degradative pathways, namely one of the steps for the transformation of catechol to Krebs cycle intermediates. We are in the process of isolating mutants of pWW0 defective in xylT in order to assess the role of XylT in the metabolism of catechol.

Acknowledgements: We thank Drs I.-S. You, D. Ghosal and I.C. Gunsalus for communicating us the nucleotide sequence of the nahT region prior to the publication, J.P. Shaw for careful reading of the manuscript, and F. Rey for typing the manuscript. This work was supported by the Swiss National Science Foundation.

#### REFERENCES

- [1] Worsey, M.J. and Williams, P.A. (1975) J. Bacteriol. 124, 7-13.
- [2] Yen, K.-M. and Gunsalus, I.C. (1982) Proc. Natl. Acad. Sci. USA 79, 874-878.
- [3] Dunn, N.W. and Gunsalus, I.C. (1973) J. Bacteriol. 114, 974-979.
- [4] Harayama, S. and Rekik, M. (1990) Mol. Gen. Genet. 221, 113-120.
- [5] Harayama, S., Rekik, M., Wasserfallen, A. and Bairoch, A. (1987) Mol. Gen. Genet. 210, 241-247.
- [6] Ghosal, D., You, I.-S. and Gunsalus, I.C. (1987) Gene 55, 19-28.
- [6a] You, I.S., Ghosal, D. and Gunsalus, I.C. (1991) Biochemistry 30, 1635-1641.
- [7] Sanger, F., Nicklen, S. and Coulson, A.R. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [8] Promega protocols and applications guide, Promega Co., Madison, WI, USA.
- [9] Henikoff, S. (1984) Gene 28, 351-359.
- [10] Higgins, D.G. and Sharp, P.M. (1988) Gene 73, 237-244.
- [11] Bruschi, M. and Guerlesquin, F. (1988) FEMS Microbiol. Rev. 54, 155-176.
- [12] Saeki, K., Miyatake, Y., Young, D.A., Marrs, B.L. and Matsubara, H. (1990) Nucleic Acids Res. 18, 1060.
- [13] Brunel, F. and Davison, J. (1988) J. Bacteriol. 170, 4924-4930.
- [14] Stainthorpe, A.C., Lees, V., Salmond, G.P.C., Dalton, H. and Murell, J.C. (1990) Gene 9, 27-34.
- [15] Nordlund, I., Powlowski, J. and Shingler, V. (1990) J. Bacteriol. 172, 6826-6833.
- [16] Suzuki, M., Hayakawa, T., Shaw, J.P., Rekik, M. and Harayama, S. (1991) J. Bacteriol. 173, 1690-1695.
- [17] Neidle, E.L., Shapiro, M. and Ornston, L.N. (1987) J. Bacteriol. 169, 5496-5503.
- [18] Harayama, S., Rekik, M. and Timmis, K.N. (1986) Mol. Gen.
- Genet. 202, 226-234.
  [19] Tanaka, M., Haniu, M., Yasunobu, K.T., Rao, K.K. and Hall, D.O. (1976) Biochem. Biophys. Res. Commun. 69, 759-765.
- [20] Takahashi, Y., Hase, T., Matsubara, H., Hutber, G.N. and Rogers, L.J. (1982) J. Biochem. 92, 1363-1368.
- [21] Takruri, I., Haslett, B.G., Boulter, D., Andrew, P.W. and Rogers, L.J. (1978) Biochem. J. 173, 459-466.
- [22] Hase, T., Wakabayashi, S., Matsubara, H., Mebarech, M. and Werber, M.M. (1980) Biochim. Biophys. Acta 623, 139-145.